首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3407篇
  免费   310篇
  国内免费   302篇
化学   1929篇
晶体学   20篇
力学   183篇
综合类   1篇
数学   534篇
物理学   1352篇
  2024年   1篇
  2023年   157篇
  2022年   77篇
  2021年   99篇
  2020年   123篇
  2019年   142篇
  2018年   70篇
  2017年   83篇
  2016年   57篇
  2015年   160篇
  2014年   162篇
  2013年   225篇
  2012年   255篇
  2011年   276篇
  2010年   188篇
  2009年   214篇
  2008年   272篇
  2007年   247篇
  2006年   280篇
  2005年   171篇
  2004年   164篇
  2003年   111篇
  2002年   108篇
  2001年   79篇
  2000年   46篇
  1999年   79篇
  1998年   46篇
  1997年   31篇
  1996年   17篇
  1995年   17篇
  1994年   16篇
  1993年   13篇
  1992年   12篇
  1991年   12篇
  1990年   8篇
  1976年   1篇
排序方式: 共有4019条查询结果,搜索用时 31 毫秒
51.
C? H Arylation of olefins by triarylphosphines via C? P bond cleavage has been achieved with either Pd0 or PdII catalysts. A variety of olefins and triarylphosphines are tolerated, and we inferred that both Pd0 and PdII could function directly without pre‐oxidation or pre‐reduction.  相似文献   
52.
53.
木质素酚类单体化合物制备烷烃燃料   总被引:1,自引:0,他引:1  
通过引入中间小分子化合物,采用傅克烷基化反应,实现了从木质素酚类单体化合物制备长链烷烃燃料.考察了催化剂、醛酮类小分子化合物、反应时间、反应温度、物料比、底物等条件对从木质素酚类单体制备二聚体反应结果的影响,并对得到的木质素酚类二聚体产物进一步加氢还原,得到C13~19烷烃燃料.结果表明,当物料比n(木质素酚类单体)/n(醛酮类中间小分子)为15:3,以Amberlyst-15为酸性催化剂,在100 ℃的条件下,反应24 h,可以得到68%产率的二聚体化合物(当底物是愈创木酚和丙醛时).将得到的二聚体化合物在270 ℃,4 MPa H2的不锈钢反应釜中进行加氢反应,3 h后,二聚体化合物完全转化为液体烷烃.提出从木质素单体出发通过引入中间小分子,实现C-C链增长来制备烷烃燃料的合成路线,为木质素的开发和应用提出了新思路与实验基础.  相似文献   
54.
传统的霍夫变换、Cannylines直线检测算法、霍夫概率变换方法在图像上的直线检测效果不佳,存在检测线段不连续不正确的问题,因而,利用Sobel滤波对红外图像横轴和纵轴两个方向分别进行锐化,通过线段检测(LSD)算法实现线段特征检测,进而经线段聚类拟合获得图像中完整的直线,通过对直线交点计算获得消失点,最后依据透视关系计算得到校正图像。实验结果表明,该方法可以实现对中性束红外图像的自动有效校正。  相似文献   
55.
Pyrrole, the smallest molecule with a nitrogen atom in the heterocycle ring, is an important tar component from coal and nitrogen-rich biomass devolatilization. Understanding the combustion chemistry of pyrrole can help to elucidate the pollutant formation chemistry from fuel nitrogen, thus enabling cleaner biomass energy utilization technologies. Experimental measurements were performed in a jet stirred reactor coupled with time of flight molecular beam mass spectrometry using synchrotron vacuum ultraviolet beam as photon ionization source, and gas chromatography-mass spectrometry to provide comprehensive measurements of 31 species including nine C4 and C5 N-containing compounds. Based on the evidence from the experiments and aiming to improve the kinetic model performance, possible formation routes are proposed with OH addition as the entrance reaction. Reaction rate coefficients for the OH addition channel as well as those for key H-atom abstraction reactions (H, OH, CH3, and HO2) were calculated by quantum chemical methods and updated in the model. The updated model can qualitatively predict the identified C4 N-containing species and perform reasonably well for a large set of experimental data considered for validation, overall improving the performance of the previous model. The influence of the investigated reactions on the predictions of fuel reactivity and pollutant formation motivates further investigations of N-containing fuel chemistry.  相似文献   
56.
The effect of the internal angle on downward flame spread over a thick folded plate is experimentally investigated in this study. The lateral side of a thermoplastic plate is cut at desired angles and two of these plates are welded to form a single folded sample. All the faces other than the front and two 5-mm areas of the front face from each side were coated to inhibit the combustion. Experiments are conducted for various folded plates of different angles, 60°, 90°, 120°, and 180°. Following ignition at the upper edge of the sample, the opposed flame spread on the front face is observed and the flame spread rate at various positions is quantified by image analysis. The flame spreads more rapidly at the folding edge, while the other parts then accelerate to catch up with the corner spread and, eventually, all the parts across the width achieve the same flame spread rate as the folding edge. This result indicates that the flame spread rate at the folding edge is the characteristic value which represents the steady-state of the system of interest. A simple model is developed considering change of heated volume against the flame and change of the induced flow velocity due to the geometry. The former effect is formulated from geometrical consideration in the vicinity of the edge, while the latter is formulated based on an experimental fact that the flame height is inversely proportional to the internal angle. A prediction formula of the flame spread rate at the folding edge is established by modifying the conventional one for the flat plate. The calculated flame spread rate shows reasonably good agreement with the experimental data. This study helps fundamental understanding of the flame spread behavior of practical combustibles such as pillars or rods with various cross-sectional shapes.  相似文献   
57.
Unsaturated aldehydes such as butenal are essential intermediates in the combustion of various alkenes and oxygenated biofuels. 2-Butenal is a typical intermediate included in the core mechanism, containing a C=C double bond adjacent to an aldehyde group. In the present work, the oxidation of 2-butenal is studied in a jet-stirred reactor (JSR) at atmospheric pressure under temperature ranging from 500 to 850 K. The synchrotron vacuum ultraviolet photoionization mass spectrometry is employed to identify the key intermediates. A kinetic model for 2-butenal oxidation is developed and validated against the experimental datasets. Fuel flux and sensitivity analyses are performed to clarify reactions governing the reactivity of 2-butenal. OH addition to the C=C double bond is essential for fuel reactivity at the initial stage. A combination of experimental observations and kinetic simulations is used to illuminate the Waddington mechanism initiated by OH addition. The resonance-stabilized feature of fuel radicals facilitates their interactions with HO2 radicals, which replenishes a large amount of OH radicals and contributes to the formation of CO2.  相似文献   
58.
In this work, the effects of model dimensionality, particle shrinkage, and boundary layer reactions on particle-scale modelling of biomass char conversion under pulverized fuel combustion conditions have been analysed by using six models: zero-dimensional models with constant particle size (0D_Cons) or shrinking particle size (0D_SPM), one-dimensional models with/without considering particle shrinkage (1D_Cons/1D_SPM), and 1D_Cons and 1D_SPM with considering boundary layer reactions (1D_Cons_BH and 1D_SPM_BH). A comparison with existing experimental data shows that the 1D_SPM_BH model with consideration of intra-particle heat and mass transfer, particle shrinkage, and boundary layer reactions is an appropriate model to describe biomass char conversion over a wide range of conditions. The 0D_Cons model is a good approximation for the conditions of small particle size (< 1 mm) at 1273–1473 K, but overestimates the char conversion rate for larger biomass char particle or at high temperatures (regime III). The 0D_SPM model gives a reasonable prediction on char conversion time but predicts a larger contribution of reaction between char and O2 as compared to the 1D_SPM_BH model. The consideration of intra-particle heat and mass transfer in particle-scale modelling (1D_Cons and 1D_SPM) is beneficial to improving the model prediction of char conversion time and the contributions of char oxidation and gasification reactions. The boundary layer reactions have a significant effect on the prediction of char conversion for large particles (> 1 mm) and high temperatures (> 1473 K). An implication for the selection of a particle-scale model in CFD modelling is also given.  相似文献   
59.
This paper explores the reaction kinetics of NiO supported on YSZ (Yttria Stabilized Zirconia) as an oxygen carrier for chemical looping combustion. Nickel particles with size less than 1 μm mixed with YSZ nano-powders are used to prepare the solid mixture, with 45% mol of NiO. Redox reactivity and oxygen carrying capacity are measured in a laboratory scale fixed bed reactor in the temperature range 500–1000 °C with different concentrations of the reactive gasses. Samples are subjected to repeated redox cycles using synthetic air (O2+Ar) for oxidation, and H2/H2O/Ar mixtures for reduction. NiO/YSZ demonstrates superb cyclic regenerability starting with the 2nd cycle, with full utilization of its oxygen carrying capacity. Compared to pure nickel, pronounced improvement is achieved in the kinetics and oxygen utilization. Full reduction is achieved, and the presence of H2O does not affect the reduction rate. Reactivity is also determined as a function of conversion. Global models of redox conversion are developed, in which surface chemistry and solid diffusion are considered. Oxidation exhibits the characteristics of a shrinking-core model with internal reactions at the Ni/NiO interface being the rate limiting step, and it is weakly temperature dependent. Reduction with H2 generally exhibits surface chemistry limitation (adsorption-desorption), with surface product formation being the rate limiting step. YSZ significantly enhances ionic transport during oxidation and reduction. Reaction rate dependencies on conversion during the two steps suggest an optimal range for the oxygen carrying capacity of the material.  相似文献   
60.
Effects of fuel jet penetration height on supersonic combustion behaviors were investigated experimentally in a supersonic combustion ramjet model combustor at a Mach speed of 2 and at a stagnation temperature of 1900 K. The jet-to-crossflow momentum flux ratio was varied to control the fuel-jet penetration height, using several injectors with different orifice diameters: 2, 3, and 4 mm. First, transverse nitrogen jets were observed to identify a relationship between the fuel jet penetration height and the momentum flux ratio by focusing Schlieren photography. Then, supersonic combustion behaviors of ethylene were investigated through combustion pressure measurements. Simultaneously, time-resolved images of CH* chemiluminescence and shadowgraphs were recorded with high-speed video cameras. Furthermore, a morphology of supersonic combustion modes was investigated for various equivalence ratios and fuel penetration heights in a two-dimensional latent space trained by the shared Gaussian process latent variable models (SGPLVM), considering CH* chemiluminescence images and the shock parameters. The results indicated that the penetration height of nitrogen jets was a function of the jet momentum flux ratio; this function was expressed by a fitting curve. Five typical combustion modes were identified based on time-resolved CH* chemiluminescence images, shadowgraphs, and pressure profiles. Even for a given equivalence ratio, different combustion modes were observed depending on the fuel penetration height. For an injection diameter of 3 and 4 mm, cavity shear-layer and jet-wake stabilized combustions were observed as the scram modes. On the other hand, although the cavity shear-layer and lifted-shear-layer stabilized combustions were observed, no jet-wake stabilized combustion was observed for an orifice diameter of 2 mm. Fuel penetration heights above the cavity aft wall were expected to affect the combustion behavior. Finally, a morphology of the supersonic combustion modes was clearly shown in the two-dimensional latent space of the SGPVLM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号